

ICT373– Assignment 2 | Semester 2, 2023

Magazine Service Program Document

Date of Submission: 2/6/2023

Author: Jin Cherng Chong

Java Files: AssociateCustomer, AssociateDatabase, Customer, Magazine, PayingCustomer,

Supplement, SupplementDatabase, MagazineServiceController, MagazineService, BillingHistory,

MagazineServiceForm

Requirements/Specifications

Assumptions:

• Aud Is currency

• Billing history includes cost of magazine for each customer that PayingCustomer is paying for

as well

• Month is 4 weeks

• Adding Customer/Adding Supplement is part of Create Mode. Edit mode is pure

editing/deleting

• Adding subscription/Delete subscription is found in edit mode because in order to add a

subscription it must already be created. Hence it really is an editing functionality

• Editing customer information means editing customer class information only not subtypes of

customer class

• “Save existing magazine service” button will override/create the saveFile.DAT in the

magazineService root directory. This file enables persistence of objects

• Users can load this saveFile.dat file to see the persistence of objects/saved magazine service

This program is used to manage a magazine service. The client can use this program to handle the

magazine service. The program allows the client to add customers to the magazine service, magazine

and supplements. The customers can subscribe to the service which allows for the client to know

how much money is owed by to them by the customers. This helps makes it easy to monitor and

manage the service.

User guide
To test out the magazine service program-

Head to create mode and load the saveFile.dat

OR

Begin in the create mode and

1. Create Magazine

2. Create Supplement/Customer

Structure/Design

Design description:

Singleton design pattern:

The Singleton design pattern has been successfully implemented in my MagazineService class. The

MagazineService.java file fully utilizes this pattern. By employing the Singleton design pattern, we

ensure that only one instance of the class can exist during runtime. In the case of the

MagazineService, all GUI modifications operate on a single MagazineService object, which is made

possible by the Singleton pattern.

The advantage of using Singleton in this scenario is that it enforces the rule of having only one

MagazineService object. The constructor itself is private, preventing the programmer from creating

multiple instances of the MagazineService class. Instead, a public getInstance method is provided,

acting as the constructor function and returning the single instance of the MagazineService. This

way, any manipulation of the MagazineService will directly affect the only existing object.

Façade design pattern
The Facade pattern has been implemented in the Customer class and Associate class. The

MagazineService class serves as the interface for manipulating various data structures, including the

supplementAvailable ArrayList and customerList. The MagazineService handles different

complexities, such as ensuring that when a supplement is removed or deleted, it is also removed

from the customers who are subscribed to it.

Simply deleting a supplement is not sufficient to remove it from the subscribed customers. This is

because the customers still hold a reference to the deleted supplement. The garbage collector is

only triggered when all references to an object are removed. Therefore, the responsibility falls on

the MagazineService to remove the supplement and all references associated with it from the

customer class.

Lack of returning objects
The program aims to minimize the need to return mutable objects. Returning an object from a class

can violate the principles of encapsulation, which is designed to provide controlled access to modify

an object. When an object is returned, it essentially provides a reference to the object, allowing the

programmer to bypass encapsulation and modify the data members directly.

In order to avoid potential violations of encapsulation, the program implements strategies to

prevent the direct return of objects. For example, in the case of the MagazineService class, the

supplementDatabase needs to be sent to the MagazineService, as it is responsible for iterating

through each element and printing them. To address this, a GetReadOnlyInterestedSupplements()

method has been intentionally designed to provide an unmodifiable list of the supplementDatabase

to the MagazineService. This enforces encapsulation by allowing read-only access to the

supplementDatabase.

Another example can be found in the AssociateDatabase class, where the data structure itself is

never returned. Instead, the class provides the ContainsAssociate(...) method. When a programmer

wants to check if an element is present in the AssociateDatabase, they pass the customer object to

this method and let the class handle the check internally. By not returning the object to the

programmer directly, the AssociateDatabase class promotes encapsulation.

Similarly, the MagazineService class has several methods that return data structures different from

those encapsulated within the class. For instance, the GetNamesAllCustomers() method returns a

string ArrayList containing all the names of the customers back to the controller. Since string data

types are immutable, any modification made to the string representing a customer's name does not

affect the customer object itself. By avoiding the direct return of the data structure for customer

objects, encapsulation is upheld.

Promotion of abstraction
The MagazineService class is designed to promote abstraction and information hiding. To achieve

this, I have intentionally ensured that, whenever possible, the controller interacts with primitive

data types instead of objects and their creation. For example, the RemoveSupplement() method in

the MagazineService class has a public interface that accepts a primitive data type, specifically an

integer parameter (i). The controller will pass a primitive integer (i) representing the location of the

supplement to be removed.

The advantage of using primitive data types in this manner is that it separates the business logic

from the user interface (UI). Consequently, any modifications made to the supplement object will

not impact the front-end UI. For instance, if we decide to introduce a new class called

SupplementVersionTwo and replace the Supplement object with the Supplement object created

from the SupplementVersionTwo class, the overall UI will remain unaffected. The client will still be

able to pass a primitive integer (i) as a parameter, and the backend will handle the necessary object

changes, allowing the continued use of the method.

This approach enhances the decoupling of the UI and the underlying implementation, promoting

flexibility and maintainability in the system.

UML

Testing:

Unit testing had been completed for the following classes- AssociateCustomer, AssociateDatabase,

Customer, Magazine, Supplement, SupplementDatabase

Feature testing:

Limitations

The program has several limitations:

• Spam clicking the create a customer form or any form creation may cause runtime error.

Only one form can be created for that one form at a time

• Billing only provides running total billing for that month and join data/subscribed data does

not influence the billing

• Customers does not have address

Test

Test objective(s) Test step(s) Expected results Pass
/Fail

1 Load existing magazine
service

• Click the “Create Magazine Service
(via File Upload)”

• Submit and Click “Load File”

• Select saveFile.Dat

File successfully loaded Pass

2 Create Associate without
PayingCustomer

• Click Create Customer

• Fill out details and select role as
associate

• Select N/A for nominated paying
customer

• Click submit

Error: mentioning
require payingCustomerr

Pass

3 Create PayingCustomer
with nominated paying
customer

• Click Create Customer

• Fill out details and select role as
paying

• Select another paying customer for
payee

• Click submit

Error: Mentioning paying
customer cannot have
another payee

Pass

