Murdoch
University

ICT373— Assighment2 | Semester 2, 2023

Magazine Service Program Document

Date of Submission: 2/6/2023
Author: Jin Cherng Chong

Java Files: AssociateCustomer, AssociateDatabase, Customer, Magazine, PayingCustomer,
Supplement, SupplementDatabase, MagazineServiceController, MagazineService, BillingHistory,
MagazineServiceForm

Requirements/Specifications

Assumptions:

e Aud s currency

e Billing history includes cost of magazine for each customer that PayingCustomer is paying for
as well

e Monthis 4 weeks

e Adding Customer/Adding Supplement is part of Create Mode. Edit mode is pure
editing/deleting

e Adding subscription/Delete subscription is found in edit mode because in order to add a
subscription it must already be created. Hence it really is an editing functionality

e Editing customer information means editing customer class information only not subtypes of
customer class

e “Save existing magazine service” button will override/create the saveFile.DAT in the
magazineService root directory. This file enables persistence of objects

e Users can load this saveFile.dat file to see the persistence of objects/saved magazine service

This program is used to manage a magazine service. The client can use this program to handle the
magazine service. The program allows the client to add customers to the magazine service, magazine
and supplements. The customers can subscribe to the service which allows for the client to know
how much money is owed by to them by the customers. This helps makes it easy to monitor and
manage the service.

User guide
To test out the magazine service program-

Head to create mode and load the saveFile.dat
OR
Begin in the create mode and

1. Create Magazine
2. Create Supplement/Customer

Structure/Design

Design description:
Singleton design pattern:

The Singleton design pattern has been successfully implemented in my MagazineService class. The
MagazineService.java file fully utilizes this pattern. By employing the Singleton design pattern, we
ensure that only one instance of the class can exist during runtime. In the case of the
MagazineService, all GUI modifications operate on a single MagazineService object, which is made
possible by the Singleton pattern.

The advantage of using Singleton in this scenario is that it enforces the rule of having only one
MagazineService object. The constructor itself is private, preventing the programmer from creating
multiple instances of the MagazineService class. Instead, a public getinstance method is provided,
acting as the constructor function and returning the single instance of the MagazineService. This
way, any manipulation of the MagazineService will directly affect the only existing object.

Facade design pattern

The Facade pattern has been implemented in the Customer class and Associate class. The
MagazineService class serves as the interface for manipulating various data structures, including the
supplementAvailable ArrayList and customerList. The MagazineService handles different
complexities, such as ensuring that when a supplement is removed or deleted, it is also removed
from the customers who are subscribed to it.

Simply deleting a supplement is not sufficient to remove it from the subscribed customers. This is
because the customers still hold a reference to the deleted supplement. The garbage collector is
only triggered when all references to an object are removed. Therefore, the responsibility falls on
the MagazineService to remove the supplement and all references associated with it from the
customer class.

Lack of returning objects

The program aims to minimize the need to return mutable objects. Returning an object from a class
can violate the principles of encapsulation, which is designed to provide controlled access to modify
an object. When an object is returned, it essentially provides a reference to the object, allowing the
programmer to bypass encapsulation and modify the data members directly.

In order to avoid potential violations of encapsulation, the program implements strategies to
prevent the direct return of objects. For example, in the case of the MagazineService class, the
supplementDatabase needs to be sent to the MagazineService, as it is responsible for iterating
through each element and printing them. To address this, a GetReadOnlyInterestedSupplements()

method has been intentionally designed to provide an unmodifiable list of the supplementDatabase
to the MagazineService. This enforces encapsulation by allowing read-only access to the
supplementDatabase.

Another example can be found in the AssociateDatabase class, where the data structure itself is
never returned. Instead, the class provides the ContainsAssociate(...) method. When a programmer
wants to check if an element is present in the AssociateDatabase, they pass the customer object to
this method and let the class handle the check internally. By not returning the object to the
programmer directly, the AssociateDatabase class promotes encapsulation.

Similarly, the MagazineService class has several methods that return data structures different from
those encapsulated within the class. For instance, the GetNamesAllCustomers() method returns a
string ArrayList containing all the names of the customers back to the controller. Since string data
types are immutable, any modification made to the string representing a customer's name does not
affect the customer object itself. By avoiding the direct return of the data structure for customer
objects, encapsulation is upheld.

Promotion of abstraction

The MagazineService class is designed to promote abstraction and information hiding. To achieve
this, | have intentionally ensured that, whenever possible, the controller interacts with primitive
data types instead of objects and their creation. For example, the RemoveSupplement() method in
the MagazineService class has a public interface that accepts a primitive data type, specifically an
integer parameter (i). The controller will pass a primitive integer (i) representing the location of the
supplement to be removed.

The advantage of using primitive data types in this manner is that it separates the business logic
from the user interface (Ul). Consequently, any modifications made to the supplement object will
not impact the front-end UI. For instance, if we decide to introduce a new class called
SupplementVersionTwo and replace the Supplement object with the Supplement object created
from the SupplementVersionTwo class, the overall Ul will remain unaffected. The client will still be
able to pass a primitive integer (i) as a parameter, and the backend will handle the necessary object
changes, allowing the continued use of the method.

This approach enhances the decoupling of the Ul and the underlying implementation, promoting
flexibility and maintainability in the system.

UML

Cardinality key

*(Zero or
many)

1oty 1)

0.1(00r1)

uUmL
Relationship
Key

PayingCustomer

- payingForAssociates: AssociateDatabase

+ PayingCustomer)

+ PayFor(AssociateCustomer nenCustomer)
+IsPayingFor(AssociateCustomer newCustomer): Boolean
+ TotalCustomersPaying(): int

+ StopPayingFor(AssociateCustomer newCustomer)

+ equals(Object obj): Booiean

+ hashCode() int
I T
1

AssociateDatabase
- associaleDB AnayList

~ AssociateDatabase()

= AddAssociate(AssociateCustomer newAssociate)

+ DeleteAssociate(Customer newCustomer)

= ContainsAssociate(Customer newCustomes) Soolean
+ NumOfAssociates(: Int

+ equals(Object objj) Boolean

~ hasnCode() int

Supplement
~name: Strng
1 - cost BigDecimal
- SupplementDB: ArrayList " |- releaseDste: Localbate Magazine
+ SupplementDatabase() + Supplement) ShC .
~ AddSupplement(Suppiement newSupplement) + SetName(String newName) sz
+ RemoveSupplement(Supplement newSupplement) ~ GetName() String +Magazine()
+ ContainSupplement(Supplement newSugplement) Boolean + SetCost(String newCost) + SetName(String neviName)
+ GetAIReadOnlySupplements(). List + GetCost() BigDecimal + GetName(): String.
*+ equals(Oject ovj): Boolean + SelReleaseDate(LocaiDate newDate) + SetCost(String newCost)
~ hashCode() int sing + GetCost(BigDecmal
y l s ~ equals(Object objj) Bookean 1
Customer + hashCode(): int
- trsthame: String)
- lostNeme: String 1 1
~emai: Sting MagazineService

- supplementsinterested: SuppiementDatabase

+ SetFistName(String newFirstName) 1

+ GetFirstName(): String /
+ SatLastName(Sring newLastName)

+ GetLastName(): Sting i
+ SetEmaiString newEma)

+ GetEmai): String

+ Iinterested:Supplement newSupplement: Bodiean

newsupy|

+ GetReadOnlyinterestedSupplements(): List
+ equals(Object obyj) Boolean
+ hashCode(). int

AssociateCustomer

- costomerPaying: PayingCustomer

+ IsCustomerPaying(Customer newPayingCustomer) Boolean
+ equals(Object): Boolean
+ hashCode): int

- selectedMag” Magazine

- supplementsAvalable: ArrayList
- customerLst AmayList

- aCustomerlist: AmayList

- INSTANCE MagazinsServics

- MagazineSenvice()
+ getinstance(): MagazineService
+ SetupMagazine(Siring newName, String newCost)
+ EditMagazineFromService(String newName, String newCost)
+ SetupSupplement(String newName, String newCost, LocalDate tempSuppDate): Boolean
+ RemoveSupplementint i)
- RemoveSupplemen(Supplement lempSupplement)
+ GetSupplement(int i): Supplement
+ GetNamesSupplements(int custSelection) Arraylist
ArrayList

Boolean

+IsMagazineSetup(): Boolean

+SaveMagazineService()

+ LoadMagazineService(String uSFiePath)

+ GetNamesAICustomers{(: ArayList

+ GetNamesPayingCustomers() ArrayList

+ GetCustomer(nt i): Customer

+ GetPayingCustomer(nt i): PayingCustomer

+ GethssociateCustomer(int i) AssociateCustomer

+ GelLatestMagName(). String

+ GetLatestMagCost(- Strng

+ GetCustomerinformation(int i) String

- o Sting
String

+ GetSupplementinformation(int . String
- GetSubscribers(Supplement newSuppiement): Sting

BilingHistory

- istOfCustomers: AmayList
- curentMagazine Magazine

~ PrintMonthinvoice()

- CalcTotaiMagOwed(: Sting

- PrintSupplementForMonthOther(): String
- PrintSupplementF orvontny): String

A

List BstOf

Testing:

Unit testing had been completed for the following classes- AssociateCustomer, AssociateDatabase,
Customer, Magazine, Supplement, SupplementDatabase

Start Page X|@ Client.java X‘@ MagazineService.java X‘@ CustomerTest.java X| v s
Source History |[@ -8R S B F e R [Bule] #
1 /* A n
2 =
3
4
3
I3 package ict373assignmentl;
5
3 import org.junit.After;
g import org.junit.Before:

10 import org.junit.Test; W
> x
Qutput - ICT373Assignment] (test) |Test Results X -
ict373assignment1.MagazineServiceTest_EndOfMonthEmails X ict373assignment1.AssociateCustomerTest X ict373assignment].AssociateDatabaseTest X ict373assignmentl.CustomerTest X
53 Test GetReadOnlyInterestedSupplements s
M |41l 17 tests passed. (0.101 5) Test GerEmail
i R . Test SetFirstlame with non A-Z characser
© = O|0ct373a95|gnmentl.customerTest passed)) Test SerEmsil with any domain name

. testGetReadOnlyInterestedSupplements passed (0.016 s) Test SetFirstName
fi @ testGetEmail passed (0.0 5) Test SetFirstlame non A-Z character

- testSetFirstameThree passed (0.05) Test SetLastName with non R-Z character
@ testSetEmailThree passed (0.0 <) Test SetlastName

- testSetFirstiameOne passed (0.0 s) Test SetLastName non A-Z character
@ @ testSetFirstNameTwo passed (0.0 s) Test Geclasclame
5 @ testSetlasthameThree possed (0.0 <) Test SetEmail with any non .com domain

. N Test RddSupplemsntInterest Null

@ - 0 testSetLastNameOne passed w‘,EI.U s,.‘ Test AddSupplementIntersst
hd @ testSetlastNameTwo passed (0.0 5) Test GetFirstName
@ - 0 testGetLastName passed (0.0 s) Test Zquals
rs @ testSetEmailFour passed (0.0 s) Test SetEmail

@ testaddSupplementinterestOne passed (0.0 s) Test SetEmail with no @domain.com

@ testAddSupplementinterestTwo passed (0.0 s)
@ testGetFirstllame passed (0.0 <)
@ testequals passed (0.0s)
- testSetEmailone passed (0.016 5)
- testSetEmailTwo passed (0.05)
v
(6] 1:1 ms

Start Page |

Client.java X|@ MagazineService.java X|@ SupplementTest.java X‘

Source | History | [[- B - | QL @ & B [& B e m|

7
8 import java.math.BigDecimal;
g import org.junit.After;
10 import org.junit.Before;
11 import org.junit.Test;
12 import static org.junit.Assert.*®;
13
14 /
15 * Test class for Supplement class
16 * @anthor Admin
17 /
18 public class SupplementTest {
1]
20 LT_|_ puklic SupplementTest() {
21 }
22
> x
Output - ICT373As si 1 (test) |Te:l Results X \ -
ict373assignment1.PayingCustomerTest X ict373assignmentl.SupplementTest X
(53 w Test SetCost greater than two decimal places ~
lall 1n ot eoed fnon@n %] Test SetCost negative cost
Al 10 te.sts passed. (0.084 s) Test SetCost muze then one decimal point
@ ict373assignmentl.SupplementTest passed Test SetCost whole number dollars
@ testSetCostThree passed (0.0s) Test GetCost|
@ testSetCostOne passed (0.0 s5) Test GetName
testSetCostSix passed (0.0 s) Test SetCost non number charactern input
testSetCostTwo passed (0.0 5) Test SetCost one decimal place
testGetCost passed (0.0 5) Test Equals
Test SetName

La ¢ @aeEe #

[V}

g

@ testGetName passed (0.0 5)

D testSetCostFive passed (0.0 s)
@ testSetCostFour passed (0.015 s)
@ testEquals passed (0.0 5)

@ testsetName passed (0.0 <)

Test.java X‘@ SupplementDatabaseTest.java X

Start Page [[a} Client.java x| ineService.java X

source | History [[@ BB QT HF G| FE D |le =]
11 /= ~
2
3
4
s L
[package ict373assignmentl:
7
8| import java.util.List;
9 import org.junit.After;
10 import org.junit.Before:
11 import org.junit.Test:
12| L import static org.junit.hssert.*;
13
14 N
15
16 * @author Ad e

Output - ICT373A (test)

|Tell Results X ‘

ict373assignment1.PayingCustomerTest X ict373assignmentl.SupplementTest X ict373assignmentl.SupplementDatabaseTest X

Dl ———) e UL ———
All 5 tests passed. (0.085 s)

=@ ict373assignment1.SupplementDatabaseTest passed
@ testGetalReadOnlySupplements passed (0.0 5)
& testaddSupplementone passed (0.0 5)

@ testaddSupplementTwo passed (0.0 s)

@ testAddSupplement passed (0.0 s)

@ testEquals passed (0.05)

Test GethllReadOnlySupplements

Test AddSupplement
Test AddSupplement Null Supplement
Test Two SupplementDatabase equals

L]
@
A
o
©
o
4
hd
B

Test AddSupplement Duplicate Supplements

Start Page | [&} Client.java > [[&] java X ustomerTest.java X v &
Source | wistory | -6 -| QS B F S B ; ®
2 ~um
3
4
s =
€ package ict373assignmentl:
7
e import org.junit.After:
g import org.junic.Before:
10 import org.junit.Test:
11 import static org.junit.Bssert.*; v
() ict373assignment].AssociateCustomerTest 3 ¢ AssociateCustomerTest x
Output - ICT373A (test) | TestResults % | =
ict373assignment1.MagazineServiceTest_EndOfMonthEmails X ict373assignmentl.AssociateCustomerTest X
> s cussemasasins ~
M Both tests passed. (0.069 5) Test IsCusscmerPaying given custemer is not paying
— =@ ict373assignmentl.AssociateCustomerTest passed
V] H @ testisCustomerPayingOne pass=d (0.0 5)
a4 ‘@ testlsCustomerPayingTwa passed (0.0 s)
4
<
~

Start Page X Client.java Xl@ I vice.java X‘ SupplementTest.java Xl SupplementDatabaseTest. java Xl@ CustomerTest.java % PayingCustomerTest.java X
Source History (2 [0 -1+ |Q B & B |F e % @wlo ol &
31 instance .AddSupplementInterest (Cimes); = 0
343
344 int subscriptNum = instance.TotalCustomersPaying():
345 assertEquals(l, subscriptNum):
346 }
347
348
349
350
351 ¥
352
v
(& ict373assignment1.PayingCustomerTest x
Output - ICTI73Assignment1 (test) | Test Results X | -
ict373assignmentl.PayingCustomerTest X jct373assignmentl.SupplementTest X ict373assignmentl.SupplementDatabaseTest ¥ ict373assignmentl. CustomerTest X
B33 Test TotalCustomersPaying given payingCustomer is paying for ome extra customer also ~
M [All 17 tests passed. (0.078 <) Test TotalCustomersPaying given payingCustomer is only paying for himeslf
= 5@ s p Cust rest J Test GetPreferredPaymentMethod given customer pays with no specifisd method
© = i assignmentL.PayingCustomerTest passed Test StopPayingFor Asssciave
= & testTotalCustomersPayingone passed (0.0 Test StopPayingFor Associave that we already don't pay for
Ay @ testTotalCustomersPayingTwo passed (0.0 s) Test PayiithCreditCard
o V] testGetPreferredPaymentMethodThree passed (0.0 =) Test PayFor Associate
) € testStopPayingForOne passed (0.0 s) Test PayFor Null Associate
[V] testStopPayingForTwo passed (0.0) Test TotalSupplementsSubscribed given payingCustomer and their assccisteCustomer has a subscription each
@ @ testPayWithCreditCard passed (0.0 <) Test TotalSupplementsSubscribed given payingCustomer has Two subscription himsels
+ @ testPayForOne possed (0.0) Test Ispayingfor given Associate Customer is paysd fox
- Test IsPayingFor given Associate Customer is not payed for
& € testPayForTwo passed (0.0) Test Debit
-~ & testTotalSupplementssubscribedone passed (0.0 5) Test GetPreferredPaymentMethod given customer pays with credit card
B € testTotalSupplementsSubscribedTwo passed (0.0 5) Test CetPreferredPaymentMethod given customer pays with debit card
0 testIsPayingForOne passed (0.0 s) Test TotalWeekCostOwed given customer has two subscription
€ testlsPayingForTwo passed (0.0 s) Test TotalWeekCostOwed given payingCustomer and their ass: telt has a on each
@ testPaywithDirectDebit passed (0.0 5)
@ testGetPreferredPaymentMethodOne passed (0.0 s)
V] testGetPreferredPaymentMethodTwo passed (0.0 s)
& testTotalWeekCostOwedOne passed (0.0 s)
@ testTotalWeekCostowedTwo passed (0.0 =)
V]
)| 347:1 | ms

=

Start Page Client.java X| MagazineService.java X|

le =|

AssociateDatabaseTest.java *

Source | History |[& [- 5 - |5Q 5 &F G 4P b R |

1 -
2 -

3 -

2 x

5 x

& package ict373assignmentl:

-

(= importc java.math.BigDecimal:
El import java.util.ArrayList;
10 import java.util.List;

>

Output - ICT373Assignment1 (test) TestResults X

ict373assignmentl.MagazineServiceTest_EndOfMonthEmails <

All 9 tests passed. (0.079 s)

=& ict373assignmentl.AssociateDatabaseTest passed
testContainsAssociate passed (0.0 <)

& testDeleteAssociate passed (0.0 s)
testTotalSupplementsCostOne passed (0.0
testTotalSupplementsCostTwo passed (0.0)
testAddAssociateOne passed (0.0 =)
testAaddAssociateTwo passed (0.0 5)
testTotalAssociateDBSupplementsCostOne passed (0.0 =)
testTotalAssociateDBSupplementsCostTwo passed (0.0 s)
testClearAssociates passed (0.0 =)

8¢+ 000FQFT

ict373assignmentl.AssociateCustomerTest >

ict373assignmentl.AssociateDatabaseTest

Test ContainsAssociate
Test
Test
Test
Test
Test
Test
Test
Test

DeleteRssociate
TotalSupplementsCost

TotalSupplementsCost given supplement cost null

Zddhssociate for duplicate Associates

AddAssociate for more than one associate

TotalhssociateDBSupplementsCost given one associate with more then 1 supplement
TotalhssociateDESupplementsCost given more than 1 associate with atleast a supplement each
Clearhssociates given contains more then one associate

Feature testing:

Test Test objective(s) Test step(s) Expected results Pass
/Fail
1 Load existing magazine . Click the “Create Magazine Service File successfully loaded Pass
service (via File Upload)”
. Submit and Click “Load File”
. Select saveFile.Dat
2 Create Associate without . Click Create Customer Error: mentioning Pass
PayingCustomer e Fill out details and select role as require payingCustomerr
associate
. Select N/A for nominated paying
customer
. Click submit
3 Create PayingCustomer . Click Create Customer Error: Mentioning paying | Pass
with nominated paying . Fill out details and select role as customer cannot have
customer paying another payee
. Select another paying customer for
payee
. Click submit
Limitations

The program has several limitations:

e Spam clicking the create a customer form or any form creation may cause runtime error.
Only one form can be created for that one form at a time

e Billing only provides running total billing for that month and join data/subscribed data does
not influence the billing

e Customers does not have address

